- IT 리더가 지목한 AI 가치 실현의 최대 걸림돌은 ‘비용 관리’
- Los CIO consideran que la gestión de costes puede acabar con el valor de la IA
- 칼럼 | AI 에이전트, 지금까지의 어떤 기술과도 다르다
- The $23 Echo Dot deal is a great deal to upgrade your smart home this Black Friday
- Amazon's Echo Spot smart alarm clock is almost half off this Black Friday
Beyond the hype: Key components of an effective AI policy
Key components of an effective AI policy
Ethical principles and values
It’s important to define the ethical principles that guide AI development and deployment within your company. These principles should reflect your organization’s values and commitment to responsible AI use, such as fairness, transparency, accountability, safety and inclusivity. If your company uses AI for targeted marketing, for example, ensure that its use respects customer privacy and prevents discriminatory targeting practices.
Data governance
Strong data governance is the foundation of any successful AI strategy. Companies need to establish clear guidelines for how its data is collected, stored and used, and ensure compliance with data protection regulations like GDPR in the EU, CCPA in California, LGPD in Brazil, PIPL in China and AI regulations such as EU AI Act. This includes regular audits to guarantee data quality and security throughout the AI lifecycle. The importance of data privacy, data quality and security should be emphasized throughout the AI lifecycle.
Algorithmic transparency and explainability
AI systems often operate as ‘black boxes,’ making decisions that are difficult to interpret. To foster trust, it is important to promote transparency in your AI processes. For instance, companies implementing AI-driven supply chains should ensure the technology explains to managers why specific decisions — such as routing inventory — are made. Providing such clarity builds confidence in AI decision-making.