Game Changer: Modernize IT Procurement with Data-driven Insights
Every organization pursuing digital transformation needs to optimize IT from edge to cloud to move faster and speed time to innovation. But the devil’s in the details. Each proposed IT infrastructure purchase presents decision-makers with difficult questions. What’s the right infrastructure configuration to meet our service level agreements (SLAs)? Where should we modernize — on-premises or in the cloud? And how do we demonstrate ROI in order to proceed?
There are no easy, straightforward answers. Every organization is at a different stage in the transformation journey, and each one faces unique challenges. The conventional approach to IT purchasing decisions has been overwhelmingly manual: looking through spreadsheets, applying heuristics, and trying to understand all the complex dependencies of workloads on underlying infrastructure.
Partners and sellers are similarly constrained. They must provide a unique solution for each customer with little to no visibility into a prospect’s IT environment. This has created an IT infrastructure planning and buying process that is inaccurate, time-consuming, wasteful, and inherently risky from the perspective of meeting SLAs.
Smarter solutions make for smarter IT decisions
It’s time to discard legacy processes and reinvent IT procurement with a new approach that leverages the power of data-driven insights. For IT decision makers and their partners and sellers, a modern approach involves three essential steps to optimize procurement — and accelerate digital transformation:
1. Understand your VM needs
Before investing in infrastructure modernization, it’s critical to get a handle on your current workloads. After all, you must have a clear understanding of what you already have before deciding on what you need. To reach that understanding, enterprises, partners, and sellers should be able to collect and analyze fine-grained resource utilization data per virtual machine (VM) — and then leverage those insights to precisely determine the resources each VM needs to perform its job.
Why is this so important? VM admins often select from a menu of different sized VM templates when they provision a workload. They typically do so without access to data — which can lead to slowed performance due to under-provisioning, or oversubscribed VMs if they choose an oversized template. It’s essential to right-size your infrastructure plan before proceeding.
2. Model and price infrastructure with accuracy
Any infrastructure purchase requires a budget, or at least an understanding of how much money you intend to spend. To build that budget, an ideal IT procurement solution provides an overview of your inventory, including aggregate information on storage, compute, virtual resource allocation, and configuration details. It would also provide a simulator for on-premises IT that includes the ability to input your actual costs of storage, hosts, and memory. Bonus points for the ability to customize your estimate with depreciation term, as well as options for third-party licensing and hypervisor and environmental costs.
Taken together, these capabilities will tell you how much money you’re spending to meet your needs — and help you to avoid overpaying for infrastructure.
3. Optimize workloads across public and private clouds
Many IT decision makers wonder about the true cost of running particular applications in the public cloud versus keeping them on-premises. Public cloud costs often start out attractively low but can increase precipitously as usage and data volumes grow. As a result, it’s vital to have a clear understanding of cost before deciding where workloads will live. A complete cost estimate involves identifying the ideal configurations for compute, memory, storage, and network when moving apps and data to the cloud.
To do this, your organization and your partners and sellers need a procurement solution that can map their entire infrastructure against current pricing and configuration options from leading cloud providers. This enables you to make quick, easy, data-driven decisions about the costs of running applications in the cloud based on the actual resource needs of your VMs.
And, since you’ve already right sized your infrastructure (step 1), you won’t have to worry about moving idle resources to the cloud and paying for capacity you don’t need.
HPE leads the way in modern IT procurement
HPE has transformed the IT purchasing experience with a simple procurement solution delivered as a service: HPE CloudPhysics. Part of the HPE GreenLake edge-to-cloud platform, HPE CloudPhysics continuously monitors and analyzes your IT infrastructure, models that infrastructure as a virtual environment, and provides cost estimates of cloud migrations. Since it’s SaaS, there’s no hardware or software to deal with — and no future maintenance.
HPE CloudPhysics is powered by some of the most granular data capture in the industry, with over 200 metrics for VMs, hosts, data stores, and networks. With insights and visibility from HPE CloudPhysics, you and your sellers and partners can seamlessly collaborate to right-size infrastructure, optimize application workload placement, and lower costs. Installation takes just minutes, with insights generated in as little as 15 minutes.
Across industries, HPE CloudPhysics has already collected more than 200 trillion data samples from more than one million VM instances worldwide. With well over 4,500 infrastructure assessments completed, HPE CloudPhysics already has a proven record of significantly increasing the ROI of infrastructure investments.
This is the kind of game-changing solution you’re going to need to transform your planning and purchasing experience — and power your digital transformation.
____________________________________
About Jenna Colleran
HPE
Jenna Colleran is a Worldwide Product Marketing Manager at HPE. With over six years in the storage industry, Jenna has worked in primary storage and cloud storage, most recently in cloud data and infrastructure services. She holds a Bachelor of Arts degree from the University of Connecticut.