- How to preorder the Samsung Galaxy S25 series - and the best deals I found
- Explore the Future of Naval Communications and Security with Cisco at AFCEA West
- 4 useful Galaxy S25 Ultra features that creatives and power users will love
- Expanding the Foundation of AI-Native SOCs: Mastering Holistic Data Integration
- This plug-and-play projector made my movie nights cinematic (and it's on sale)
Accenture’s Penelope Prett on the predictive value of data
Accenture’s Chief Operating Officer Manish Sharma commissioned an initiative called the Rapid Data Lab. He challenged a small, focused team to spend six months to select our three most important data processes, such as a monthly review of our global profitability, and create the best flow and visualization from the data. This data had been held in PowerPoint decks and had no predictive element. He then asked the leadership team to conduct our meetings using the data flow, following where the data takes us, not what the team wants to talk about.
After six months, our whole company fell in line, because when you create small capabilities that show the power of data, it is addictive to the population. I guarantee that every company has enough data under the hood to create one of these capabilities.
We called the Rapid Data Lab ‘Velocity One,’ and then Manish asked me to create a plan for ‘Velocity Two,’ a permanent, enduring capability to embed the power of data into our company’s way of life. That’s what I’m doing now.
What is your advice regarding the architecture of a data strategy?
The rate of technology evolution is particularly acute in the data and AI space right now, so selecting technology can be intimidating. But basically, you will need a major platform for your data products layer, which is where you generate, store, and handle the data. Then you need a data mesh to manipulate the data and get it to a state where you can send it to the visualization layer. Wrapped around all of that is a technology toolset that governs the data.
Your choices in each of these four layers — storage, mesh, visualization, and governance — are infinite, but if you understand what you want to do with each layer, the path to the right technology becomes much easier.
How are you democratizing the data?
I seek to push out to my business partners as much data as they are willing to take on. My role is to create a safe sandbox, and their job is to build whatever they want within that sandbox that best serves our business.
Democratization at its best is when everybody can live their best selves with the data that you give them. But you don’t want people to create their own data, so it is important to create ‘shopability’ in the model, so your business customers get what they need from the data you provide and do not generate their own core data. When everyone uses the same core data, the only thing that differs is the interpretation of certain layers of the data. Problems occur when we source data from different places. This is where I am concentrating right now, working in tandem with my business customers to give them the data that they want, and not get in the way of how they use it.
What will be the evolution of driving value from data?
Today, we use data to think about what is next for our businesses. If we apply technology properly, we will soon reach a point where the intelligence of the technology will ask us, ‘Have you thought about this? Have you considered that?’ Data technology will reach beyond what humans bring to the picture. We all operate from our own contextual lens, which will be an additive component at the table. But the data will ask us questions that allow us to maximize what our human brains can do.