Gartner: The future of AI is not as rosy as some might think


A Gartner report predicts that the second-order consequences of widespread AI will have massive societal impacts, to the point of making us unsure if and when we can trust our own eyes.

Image: iStockphoto/Feodora Chiosea

More about artificial intelligence

Gartner has released a series of Predicts 2021 research reports, including one that outlines the serious, wide-reaching ethical and social problems it predicts artificial intelligence (AI) to cause in the next several years. In Predicts 2021: Artificial Intelligence and Its Impact on People and Society, five Gartner analysts report on different predictions it believes will come to fruition by 2025. The report calls particular attention to what it calls second-order consequences of artificial intelligence that arise as unintended results of new technologies.

SEE: TechRepublic Premium editorial calendar: IT policies, checklists, toolkits, and research for download (TechRepublic Premium)

Generative AI, for example, is now able to create amazingly realistic photographs of people and objects that don’t actually exist; Gartner predicts that by 2023, 20% of account takeovers will use deepfakes generated by this type of AI. “AI capabilities that can create and generate hyper-realistic content will have a transformational effect on the extent to which people can trust their own eyes,” the report said.

The report tackles five different predictions for the AI market, and gives recommendations for how businesses can address those challenges and adapt to the future: 

  • By 2025, pretrained AI models will be largely concentrated among 1% of vendors, making responsible use of AI a societal concern
  • In 2023, 20% of successful account takeover attacks will use deepfakes as part of social engineering attacks
  • By 2024, 60% of AI providers will include harm/misuse mitigation as a part of their software
  • By 2025, 10% of governments will avoid privacy and security concerns by using synthetic populations to train AI 
  • By 2025, 75% of workplace conversations will be recorded and analyzed for use in adding organizational value and assessing risk

Each of those analyses is enough to make AI-watchers sit up and take notice, but when combined it creates a picture of a grim future rife with ethical concerns, potential misuse of AI, and loss of privacy in the workplace. 

How businesses can respond 

Concerns over AI’s effect on privacy and truth are sure to be major topics in the coming years if Gartner’s analysts are accurate in their predictions, and successful businesses will need to be ready to adapt quickly to those concerns.

A recurring theme in the report is the establishment of ethics boards at companies that rely on AI, whether as a service or a product. This is mentioned particularly for businesses that plan to record and analyze workplace conversations: Boards with employee representation should be established to ensure fair use of conversations data, Gartner said.

SEE: Natural language processing: A cheat sheet (TechRepublic)

Gartner also recommends that businesses establish criteria for responsible AI consumption and prioritize vendors that “can demonstrate responsible development of AI and clarity in addressing related societal concerns.”

As for security concerns surrounding deepfakes and generative AI, Gartner recommends that organizations should schedule training about deepfakes. “We are now entering a zero-trust world. Nothing can be trusted unless it is certified as authenticated using cryptographic digital signatures,” the report said. 

There’s a lot to digest in this report, from figures saying that the best deepfake detection software will top out at a 50% identification rate in the long term, to the prediction that in 2023 a major US corporation will adopt conversation analysis to determine employee compensation. There’s much to be worried about in these analyses, but potential antidotes are included as well. The full report is available at Gartner, but interested parties will need to pay for access.

Also see



Source link