- OpenAI, SoftBank, Oracle lead $500B Project Stargate to ramp up AI infra in the US
- 오픈AI, 700조원 규모 'AI 데이터센터' 프로젝트 착수··· 소프트뱅크·오라클 참여
- From Election Day to Inauguration: How Cybersecurity Safeguards Democracy | McAfee Blog
- The end of digital transformation, the rise of AI transformation
- 줌, '팀챗' 업데이트··· "사이드바 통해 업무 간소화"
Unified CM High Availability / Call Processing Redundancy / Upgrading CUCM Cluster
Unified CM High Availability
Because of the underlying Unified CM clustering mechanism, a Unified Communications System has additional high availability considerations above and beyond hardware platform disk and power component redundancy, physical network location, and connectivity redundancy. This section examines call processing subscriber redundancy considerations, call processing load balancing, and redundancy of additional cluster services.
Call Processing Redundancy
Unified CM provides the following call processing redundancy configuration options or schemes:
- Two to one (2:1) — For every two primary call processing subscribers, there is one shared secondary or backup call processing subscriber.
- One to one (1:1) — For every primary call processing subscriber, there is a secondary or backup call processing subscriber.
These redundancy schemes are facilitated by the built-in registration failover mechanism within the Unified CM cluster architecture, which enables endpoints to re-register to a backup call processing subscriber node when the endpoint’s primary call processing subscriber node fails. The registration failover mechanism can achieve failover rates for Skinny Client Control Protocol (SCCP) IP phones of approximately 125 registrations per second. The registration failover rate for Session Initiation Protocol (SIP) phones is approximately 40 registrations per second.
The call processing redundancy scheme you select determines not only the fault tolerance of the deployment, but also the fault tolerance of any upgrade.
With 1:1 redundancy, multiple primary call processing subscriber failures can occur without impacting call processing capabilities. With 2:1 redundancy, on the other hand, only one of the primary call processing subscribers out of the two primary call processing subscribers that share a backup call processing subscriber can fail without impacting call processing. If the total number of endpoints registered across both primary subscribers and the traffic to those two primary subscribers are within the capacity limits of a single subscriber, then the backup subscriber is able to handle the failure of both primary subscribers.
Note Do not deploy 2:1 redundancy if the total capacity utilization across the two primary subscribers would exceed the capacity of the backup subscriber. For example, if the call processing capacity or endpoints capacity utilization exceeds 50% on both primary subscribers, the backup subscriber would not be able to handle call processing services properly if both primary subscribers fail. In these scenarios, for example, some endpoints might not be able to register, some new calls might not be established, and some services and features might not operate properly because the backup subscriber system capacity has been exceeded.
Likewise, with the 1:1 redundancy scheme, upgrades to the cluster can be performed with only a single set of endpoint registration failover periods impacting the call processing services. Whereas with the 2:1 redundancy scheme, upgrades to the cluster can require multiple registration failover periods.
A Unified CM cluster can be upgraded with minimal impact to the services. Two different versions (releases) of Unified CM may be on the same server, one in the active partition and the other in the inactive partition. All services and devices use the Unified CM version in the active partition for all Unified CM functionality. During the upgrade process, the cluster operations continue using its current release of Unified CM in the active partition, while the upgrade version gets installed in the inactive partition. Once the upgrade process is complete, the servers can be rebooted to switch the inactive partition to the active partition, thus running the new version of Unified CM.
With the 1:1 redundancy scheme, the following steps enable you to upgrade the cluster while minimizing downtime:
Step 1 Install the new version of Unified CM in the inactive partition, first on the publisher and then on all subscribers (call processing, TFTP, and media resource subscribers). Do not reboot.
Step 2 Reboot the publisher and switch to the new version.
Step 3 Reboot the TFTP subscriber node(s) one at a time and switch to the new version.
Step 4 Reboot any dedicated media resource subscriber nodes one at a time and switch to the new version.
Step 5 Reboot the backup call processing subscribers one at a time and switch to the new version.
Step 6 Reboot the primary call processing subscribers one at a time and switch to the new version. Device registrations will fail-over to the previously upgraded and rebooted backup call processing subscribers. After each primary call processing subscriber is rebooted, devices will begin to re-register to the primary call processing subscriber.
With this upgrade method, there is no period (except for the registration failover period) when devices are registered to subscriber servers that are running different versions of the Unified CM software.
While the 2:1 redundancy scheme allows for fewer servers in a cluster, registration failover occurs more frequently during upgrades, increasing the overall duration of the upgrade as well as the amount of time call processing services for a particular endpoint will be unavailable. Because there is only a single backup call processing subscriber per pair of primary call processing subscribers, it might be possible to reboot to the new version on only one of the primary call processing subscribers in a pair at a time in order to prevent oversubscribing the single backup call processing subscriber. As a result, there may be a period of time after the first primary call processing subscriber in each pair is switched to the new version, in which endpoint registrations will have to be moved from the backup subscriber to the newly upgraded primary subscriber before the endpoint registrations on the second primary subscriber can be moved to the backup subscriber to allow a reboot to the new version. During this time, not only will endpoints on the second primary call processing subscriber be unavailable while they re-register to the backup subscriber, but until they re-register to a node running the new version, they will also be unable to reach endpoints on other subscriber nodes that have already been upgraded.
Note Before you do an upgrade, Cisco recommends that you back up the Unified CM and Call Detail Record (CDR) database to an external network directory using the Disaster Recovery Framework. This practice will prevent any loss of data if the upgrade fails.
Note Because an upgrade of a Unified CM cluster results in a period of time in which some or most devices lose registration and call processing services temporarily, you should plan upgrades in advance and implement them during a scheduled maintenance window. While downtime and loss of services to devices can be minimized by selecting the 1:1 redundancy scheme, there will still be some period of time in which call processing services are not available to some or all users.
For more information on upgrading Unified CM, refer to the install and upgrade guides available at
http://www.cisco.com/en/US/products/sw/voicesw/ps556/prod_installation_guides_list.html
Cisco SRND Link # http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/srnd/9x/uc9x/callpros.html