- Best One UI 7 features coming to Samsung Galaxy S25 (and older models, too)
- Cisco CEO Robbins on AI: Pressure to deploy is real
- The Samsung Galaxy S25 Edge was sneakily the best announcement at Unpacked 2025
- Samsung Galaxy S25 Ultra is losing this creative S Pen feature - but you likely won't notice
- Enhancing data backup and recovery with AI and ML
What is data governance? Best practices for managing data assets
BARC recommends the following steps for implementation:
- Define goals and understand benefits
- Analyze current state and delta analysis
- Derive a roadmap
- Convince stakeholders and budget project
- Develop and plan the data governance program
- Implement the data governance program
- Monitor and control
Data governance vs. data management
Data governance is just one part of the overall discipline of data management, though an important one. Whereas data governance is about the roles, responsibilities, and processes for ensuring accountability for and ownership of data assets, DAMA defines data management as “an overarching term that describes the processes used to plan, specify, enable, create, acquire, maintain, use, archive, retrieve, control, and purge data.”
While data management has become a common term for the discipline, it is sometimes referred to as data resource management or enterprise information management (EIM). Gartner describes EIM as “an integrative discipline for structuring, describing, and governing information assets across organizational and technical boundaries to improve efficiency, promote transparency, and enable business insight.”
Importance of data governance
Most companies already have some form of governance for individual applications, business units, or functions, even if the processes and responsibilities are informal. As a practice, it is about establishing systematic, formal control over these processes and responsibilities. Doing so can help companies remain responsive, especially as they grow to a size in which it is no longer efficient for individuals to perform cross-functional tasks. Several of the overall benefits of data management can only be realized after the enterprise has established systematic data governance. Some of these benefits include:
- Better, more comprehensive decision support stemming from consistent, uniform data across the organization
- Clear rules for changing processes and data that help the business and IT become more agile and scalable
- Reduced costs in other areas of data management through the provision of central control mechanisms
- Increased efficiency through the ability to reuse processes and data
- Improved confidence in data quality and documentation of data processes
- Improved compliance with data regulations
Goals of data governance
The goal is to establish the methods, set of responsibilities, and processes to standardize, integrate, protect, and store corporate data. According to BARC, an organization’s key goals should be to:
- Minimize risks
- Establish internal rules for data use
- Implement compliance requirements
- Improve internal and external communication
- Increase the value of data
- Facilitate the administration of the above
- Reduce costs
- Help to ensure the continued existence of the company through risk management and optimization
BARC notes that such programs always span the strategic, tactical, and operational levels in enterprises, and they must be treated as ongoing, iterative processes.